If it's not what You are looking for type in the equation solver your own equation and let us solve it.
175t^2-63=0
a = 175; b = 0; c = -63;
Δ = b2-4ac
Δ = 02-4·175·(-63)
Δ = 44100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{44100}=210$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-210}{2*175}=\frac{-210}{350} =-3/5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+210}{2*175}=\frac{210}{350} =3/5 $
| -7x=3x+24 | | (2b-2)÷2+2b÷5=13 | | v+9=5v= | | 8(1-7x)=-440 | | -18=6y+6(1+3y) | | 4=(x+3)*3 | | 10+x/7=8 | | -4(3+8x)=-172 | | 4(x-1)=12(x-8) | | c-5=28 | | c/10+40=46 | | 4=x+3*3 | | 9b²+30b+25=0 | | (2x-5)+6x=2x+14 | | 5(7x-2)=93 | | -4-8(2n+1)-7=5(3+4n) | | 1/2(6x-4)=5-x | | -2x+4=10-2 | | 5(7x-2=93 | | d-139=267 | | (-3)=2x+13 | | 5b+1+2b=1 | | 4t+80=4t+80 | | (2w-3)(w+6)=162 | | 3(5x+9)=−26+23 | | 13v+v-4=15v | | 76r=152 | | 8=x/7+10 | | y-15=-9 | | 0.6(10n*25)=10+5n | | (3x+17)+1/2x-5=180 | | 10=t+-3 |